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CHAPTER 3

MAGNETOHYDRODYNAMICS

In this chapter we use statistical approaches to coronal plasmas, ‘smearing out’
individual particles to a fluid. Although their individuality is lost, the particles’
collective physical properties are retained. Magnetohydrodynamics (MHD) is a
fluid theory. It is appropriate for coronal phenomena that take place on a relatively
large scale and are slow. The main branches of MHD are: equilibria, waves,
instabilities, and reconnection, on each of which there are already excellent books.
These basic processes have been applied to dynamo theory, magneto-convection,
flows in the photosphere and chromosphere, coronal loops, prominences, flares,
coronal heating, and stellar winds, again on each of which whole books have been
written.

This chapter introduces MHD from basic principles and at an elementary level.
Its aim is to prepare the ground for the kinetic plasma theory which deals with
much smaller-scale and faster processes, and which is the subject of Chapters 5 —
10.

3.1. Basic Statistics

3.1.1. BOLTZMANN EQUATION

The results of Section 2.6 on collisions in plasmas now allow a deeper understanding
of the Boltzmann equation introduced in Chapter 1. If the number of particles of
species a is conserved, their distribution function in space and velocity must obey
an equation of continuity

9]

$+v.%+i.%=o . (3.1.1)
This states mathematically that a decrease of the number of particles in an ele-
mentary volume of phase space, fx(X,Vv,t)d3z d3v, is equal to the loss of particles
from the volume by particle motion in space and velocity.

‘We now deal specifically with electromagnetic forces and put

. _ Yo 1
=—(E+ - B) . 3.1.2
%= 2B+ v B) (3.2
The electric and magnetic fields can be produced collectively or externally, or orig-
inate from neighboring particles. The former two are the fields an observer would

measure at low spatial or temporal resolution, and they form the macroscopic
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parts E,, and By,. The latter are caused by particles within a Debye radius that
generate microscopic fields AE and AB fluctuating rapidly in space and time.
Thus

E=En+AE |, (3.1.3)
B=B,,+AB . (3.1.4)

We rewrite Equation (3.1.2), dropping the subscripts m and a wherever no con-
fusion is possible,

AF

— (3.1.5)

)
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summarizing the microscopic forces in AF. Equation (3.1.1) becomes the Boltz-
mann equation (1.4.11),

af af ¢ 1 af AF of  (0f
Et—-{'V"a—x‘{'E(E—FEVXB)-a—v———T—n—'g‘; =: (—5?)6011 . (316)
It contains a subtlety: As the left side contains only variables averaged over the
ensemble, the right side must also be evaluated to express the average effect of
collisional encounters (as was done in Section 2.6).

Equation (3.1.6) is the basis for the physics of fluids as well as kinetic plasma
physics. In the fluid approach, the Boltzmann equation is integrated in velocity
space. This is the topic of the following two sections. In Chapter 4 we shall come
back to Equation (3.1.6), but neglect the collision term. The reduced, collisionless
equation is generally referred to as the Vlasov equation. The choice of approach
is mainly a question of the time scale or wave frequency.

3.1.2. VELOCITY MOMENTS OF THE BOLTZMANN EQUATION

In the fluid description of a gas the information on the particle velocity distri-
bution is relinquished and replaced by values averaged over velocity space. This
is obviously reasonable if the velocity distribution contains little information; in
particular, if it is close to Maxwellian and remains so during the course of the
process. Let us define such an average for a general variable A(v) with

< Aw) > = —f%?’-f—v . (3.1.7)
Using this notation, we define for one species (with mass m):
particle density n= [ fd3v (3.1.8)
average velocity Vi=<v> (3.1.9)
stress tensor P:=nm<vov> (3.1.10)
pressure tensor p:=nm< (v-V)o(v-V)> (3.1.11)
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mean thermal velocity vii= /< (vi — Vi)2 > (3.1.12)
in 7-direction

mean thermal energy density E=imn< (v-V)?>= 3nkpT (3.1.13)
The definitions of stress and pressure make use of the fact that a coronal plasma

is very close to an ideal gas. Equation (3.1.13) also defines a temperature T
corresponding to Equation (1.4.10).

A. Conservation of Particles

Now integrate the Boltzmann equation (3.1.6) in velocity space:

of of q 1 of of
LB gl = - 2L By = h 3
Bt v—i—/v 3 dv+ /(E—l—cva) avdv /<3t)condv

(3.1.14)
The third term on the left side is a scalar product, thus a sum of three terms.
Each can be integrated by parts and then vanishes. The collision term represents
the change of the density by collisions, and is zero due to particle conservation,

of on
Y #Be=(Z) =0 .
! /(at>coll ’ <8t>coll 0 (3115)

Thus the remaining terms are

on 0
5 + o (nV)=0 . (3.1.16)

The integration of the Boltzmann equation (3.1.16) has yielded the equation of
continuity of particle density — a result of particle conservation.

B. Conservation of Momentum

Let us multiply the Boltzmann equation by muy, where k denotes here one of the
three velocity coordinates, and integrate over all velocity space. The first term
then becomes

7] 0
Moy /vk fd3v = e (mnVy) (3.1.17)

and corresponds to the temporal change of momentum density. The second term
is the force per unit volume due to a pressure gradient,

m/vkv- (—9;(1 V=g (nm < vV >) = Z ol (3.1.18)

The subscripts k and 4 refer to tensor and vector elements. Replacing the electro-
magnetic force, g(E + (v x B)/c), and the other forces by the general symbol F,
we find for the third term
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a 1]
/'l)kF . B—‘f’d&l) = — / fg; . (F’Uk)d?”l) =-n< Fk; > (3119)
and for the collision term
of s, _ (0 _.
m/vk <—6—t> coud v = (atank)cou =8 , (3.1.20)

representing the change of momentum by collisions. Combining Equations (3.1.17)
~ (3.1.20), the first moment of the Boltzmann equation becomes

d OPpi
57 (MmVe) + Z e =< Fp>+Sk . (3.1.21)

Equation (3.1.21) expresses the conservation of momentum and is usually referred
to as the equation of motion. These equations hold for each particle species. The
different species are coupled by the collision term, S, of each species.

As an immediate application of the above derivations, Exercise 3.1 considers
the electric field that arises from the smaller gravitational force on the electrons
compared to ions. In a stationary equilibrium this electric field reduces the weight
of the protons by half, and instead the electrons are pressed into the star. The
extent of electron and proton atmospheres and their scale heights become equal.
Compared to the Lorentz force of coronal magnetic fields, the effect of the electric
field on individual particle orbits is usually small.

C. Conservation of Energy

Analogously, the second moment yields energy conservation,

%+%-(n<%m02v>)=n<F-v>+H . (3.1.22)
The right side of Equation (3.1.22) consists of two terms. The first represents the
work done by the force F. It may include, for example, acceleration by an electric
field, emission of radiation, or a heat input. 11 is the change in energy density due
to collisions.

The second term on the left side of Equation (3.1.22), the energy flux, enters as
a new variable, just as particle and momentum flux have appeared in the equations
of particle and momentum conservation, respectively. The term includes changes
in flow velocity, as well as changes in thermal conduction, —V - (& * VT'). Classical
thermal conduction is controlled by particle collision. The thermal conductivity
tensor, &, is diagonal. Parallel to the magnetic field, thermal conduction is pri-
marily by the more mobile electrons. Across the magnetic field, ions — having a
larger gyroradius — are primarily responsible.

The thermal conductivity parallel to the magnetic field is proportional to the
density multiplied by the thermal velocity and the mean free path (Imsp = Vzelt§)-
In equilibrium the diffusion of electrons builds up an electric field such that the
current is cancelled. This electric field reduces the heat flow by a factor a ~ 0.5.
For solar abundances one finds from Spitzer (1962)
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Kz A @ nevottky ~ 1.72 - 1075 [erg sTP K™t em™?]. (3.1.23)

For thermal conduction perpendicular to the magnetic field, we replace the
thermal velocity in Equation (3.1.23) by the ion gyroradius R; divided by the
thermal collision time of ions, ¢}, namely

o AmEBRE g g jgm1eme(n )’

K - et/
+ t; T3 B2

ke [ergsT'K'em™' . (3.1.24)

Equation (3.1.24) assumes ;¢ > 1. Solar abundances have been assumed, T
is in degrees kelvin, B in gauss, and A has been given by Equations (2.6.16)
and (2.6.17). Note that Equations (3.1.23) and (3.1.24) assume plasmas having
nearly Maxwellian velocity distributions and particles having a mean free path
much shorter than the temperature scale length. These approximations become
questionable in the transition layer, in flares, and in solar and stellar winds.

3.1.3. ELEMENTARY MAGNETOHYDRODYNAMICS (MHD)

Some processes in coronal physics are slow, and if a plasma process is slow enough,
the physics becomes much simpler. Let us introduce a characteristic time of the
process, tchar, which may be a travel time, a wave period or the inverse of a growth
rate. We shall assume that the process is slow enough for particle collisions to
smear out deviations from a Maxwellian velocity distribution, and for differences
between particle species in temperature and average velocity to become unim-
portant. Furthermore, we assume that spatial limitations and boundary effects
are unimportant. It may then be advantageous to sum particle number, momen-
tum and energy density over all species «, and use the equations of conservation.
An important consequence is that the sum over the collision terms of all species
vanishes, since the total momentum is conserved,

dos*r=0 . (3.1.25)
We shall use the following definitions:
total mass density pi=>., MaNg (3.1.26)
total stress tensor P:=3 P, (3.1.27)

mass flow velocity

V= (3, MmanaVa)/p (3.1.28)
barycentric pressure P:=) ,Mana < (v—V)o(v—-V)>, (3.1.29)

=P-VoVp (3.1.30)
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The tensor p is defined in relation to the motion of mass, being dominated by the
ions (baryons). Furthermore, one finds from the definitions (1.4.6) and (1.4.7)

charge density P =3 40" (3.1.31)
current density J=3%_,0mnVa - (3.1.32)

A. MHD Equations and Approximations

We now multiply Equation (3.1.16) by mq and sum over a to get the equation of
mass conservation,
op

5 +V-(pV)=0 . (3.1.33)

Summing the equation of momentum conservation (3.1.21) over the particle species
yields, for electromagnetic forces and gravity,

2 3] 1
—Lhi = ~V,xB o ) 3.1.34
E(ka) + e Py; gna[qa(E + cV x B)g + Magr) ( )

which we rewrite in vector form using Equations (3.1.30) and (3.1.33),

ov

Pot

The equation states that the change in momentum density (first term on the lleft

side) is caused by the flow of momentum (second term), pressure gradient (third

term) and external forces (right side). The equations for mass and momentum

conservation, (3.1.33) and (3.1.35), contain the variables p, V,p, p*, E,J,B. rI._‘he

combined system of equations including Maxwell’s (Egs. 1.4.1 - 1.4.5) comprises

a smaller number of equations and initial conditions than variables. The following
approximations are generally used in MHD to close the system:

1
+p(V-V)V+V*f)=p*E+zJ><B+pg . (3.1.35)

(1) Charge neutrality, p* = 0, is suggested by the Debye shielding effect for large-
scale and slow processes. Ampere’s equation (1.4.2) then requires V-J = 0.

(2) J = oF' in the frame of reference of the system moving with V.

= ¢(E + (V x B)/c) in the laboratory system.
The electric conductivity o has to be determined from electron—ion collisions
(Section 9.2). Often o = o0 is assumed; then E = —(V xB)/c. This is called
ideal MHD.

(3) We assume that the characteristic time of the process exceeds the rate of
collisions (Eq. 2.6.31) and the gyroperiods,
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Then the distributions of particle velocity, and consequently the pressure,
are isotropic. The relation

Phs = Onip® = nakpTa (3.1.37)

then follows from Equations (3.1.11) and (3.1.13) where an ideal gas has
been assumed. Equation (3.1.37) is called the equation of state. The total
pressure is the sum of the partial pressures,

P=) Pa - (3.1.38)

This is a consequence of Equation (3.1.36), requiring that the collisions have
time to equalize the temperatures of all species. Thus,

p=) naksT = %kBT : (3.1.39)

For a fully ionized plasma with solar abundances, Y, 7o = 1.92n,, and the
mean mass is m = 0.60m,,.

(4) Tn place of the energy equation (3.1.22), a process may be approximated by
one of the following special equations of state adapted to the problem:

incompressible <= p(t) = const. (implying V-V =0, cf. Eq. 3.1.33)
isothermal <= p x p

adiabatic <= pp~5/3 = const .

Furthermore, several implicit assumptions are generally made: (i) In the evalua-
tions of ¢ and p the plasma is assumed to be close to thermodynamic equilibrium;
and (i7) the internal structure of the plasma is neglected. This means that the size
of the plasma and the phenomena of interest (e.g. the wavelength) are assumed
to exceed the ion gyroradius, the Debye length, and the mean free path. If we
also neglect relativistic effects and the displacement current, the basic equations
of MHD are

Op

o +V-(pV)=0 (3.1.40)
A% 1

p—ét—+p(V-\7)V—|—Vp= ZJ x B + pg (3.1.41)

vxB=5 (3.1.42)
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== 3.1.43
VxE P ( )
V-B=0 (3.1.44)
J=0(E+ %V x B) (3.1.45)

Energy Equation or Specialized Equation of State .

Instead of the energy equation supplemented by a heat conduction equation,
the system of equations may be closed by an appropriately specialized equation of
state. MHD in these various forms finds many applications in astrophysics from
the liquid metallic core of planets to the flows of stellar winds.

B. Electric Fields

The displacement current 1/47 OE/0t (Eq. 1.4.2) has been neglected in Equation
(3.1.42) for the following reason. Assume a scale length of the fields, H, and a
characteristic time for the process, to. Faraday’s equation (3.1.43) implies £ =~
—vB/c, where v = H/to. Therefore, the displacement current is about v?B/(He),
and is much smaller than ¢V X B ~ c¢B/H for v* < ¢?.

The electric field, E, can be calculated readily from Ohm’s law (3.1.45), and J
follows from Ampere’s law (3.1.42). Putting them into Faraday’s equation (3.1.43)
yields the induction equation

0B A s
S HYXBxV)==VB (3.1.46)
where we have used the vector identity (A.10) and V -B = 0.

It is important to note that in ideal MHD B and V are the fundamental
variables. J and E are secondary and can be calculated if required. B and V are
determined by the induction equation and the equation of motion. Once they are
found, J and E follow. Note in particular that J is not driven by E in ideal MHD,
and so standard circuit theories are inappropriate.

C. MHD Properties

Equations (3.1.40) — (3.1.45) are only the starting point of MHD. They can describe
an enormous number of phenomena. Over the years, much practical knowledge on
MHD plasma behavior has accumulated, some key elements of which we present
here.

e The strong coupling between a magnetic field and matter, a very important
property of plasmas, follows immediately from the induction equa'tlon (3..1.46').
This consequence of Equation (3.1.46) can best be appreciated by mtegratmg..lt
over a plane surface A. The left side then expresses the total change in magnetic
flux through the surface, @ := J4B - ds. Let the boundary A’ of A be defined
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by some floating corks in the fluid. The boundary thus moves with the mass flow
velocity defined in Equation (3.1.41). The first term of Equation (3.1.46) is the
change of flux due to a variation in B, the second term corresponds to the change
caused by the motion of the boundary of A. Thus we write the left side of the
integrated Equation (3.1.46) as a total derivative,

ae OB Ad
— = —-d B -dl =~ si ’B. 1.
= e s+ A BxV)-d sig(V ds)47rH1230 (3.1.47)
The scale length H3 = B/V2B has been introduced. The time
AnH%0
T = c2B (3.1.48)

is needed for diffusion of the magnetic field through the plasma. It is an upper limit
of the decay time for magnetic flux concentration. For photospheric conditions
(Hp = 108cm, o ~ 10'2 Hz) the diffusion time is 7 ~~ 4 years. Obviously, sunspots
with typical lifetimes of weeks cannot build up or decay by diffusion of field lines.
It will be shown in Section 9.2.1 that the conductivity o is inversely proportional
to the collision rate. Equation (3.1.48) states that the magnetic diffusion involves a
drag on the particle motion due to collisions. The same drag and finite conductivity
also dissipate energy (Ohmic heating). Therefore, the decay of the magnetic field
by diffusion is due to dissipation of energy through Ohmic heating and vice versa.

If one studies processes shorter than the diffusion time, ¢ may be considered
infinite. Equation (3.1.47) then states that the magnetic flux is conserved in a
surface moving with the plasma. The magnetic field is frozen into the matter,
meaning that a fluid element is attached to its field line like a pearl on a string.
Density differences can be smoothed out easily along field lines, but not across
them, which is why it has become common to think of a field line as a real object,
though it is only a mathematical construct. The magnetic field line and the plasma
stay together whether the matter is moving and pulling the field along or vice versa.

e The induction equation (3.1.46) relates the temporal change of the magnetic
field to convection (second term) and diffusion (right side). An MHD process is
conveniently characterized by the ratio of these terms, a dimensionless parameter
known as the magnetic Reynolds number

4
Ry = c—f V.o Hg , (3.1.49)

where V| is the velocity component perpendicular to B, and Hp is the scale length
of the magnetic field. R,, is infinite for ideal MHD and much larger than unity
for most coronal processes.

e It is convenient to eliminate J in the equation of momentum conservation
(3.1.41) to give

av B? B-V)B
p—-—t—+p(V-V)V+V(p+8—7T)= (B-V)B

. 1.
5 i TP (3.1.50)
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The right side differs from zero if the field curves or converges and so exerts an
anisotropic tension. Equation (3.1.50) contains an important relation between
magnetic field and plasma pressure. Let us consider a stationary plasma (i.e.
V = 0,8/8t = 0). The first two terms of Equation (3.1.50) then vanish. The
rest of the equation states that p and B?/87, the magnetic energy density, are in
equilibrium with tensions produced by magnetic field inhomogeneity. For straight
magnetic field lines the right side of Equation (3.1.50) vanishes, and the combined
pressures of the plasma and the magnetic field become constant in space. Localized
strong field regions then must have lower plasma pressure to balance the outside
pressure. As the magnetic pressure in coronae is usually higher than the plasma
pressure, large variations of the latter can be accommodated by small variations
of the magnetic field. This is the reason for extreme inhomogeneity of coronae.
Consider as an example an idealized ‘flux tube’, a plasma structure outlined
by magnetic field lines. Let its density be one tenth of the outside density; assume
the same temperature and no magnetic field outside. The magnetic field of the
flux tube must then balance 9/10 of the outside pressure. At the bottom of the
solar photosphere, where pou =2 2 - 10° dyne cm™2, the magnetic field would be of
order 2100 G, comparable to the maximum field strength measured in sunspots.

o The ratio of the thermal pressure to the magnetic pressure,

e 2
g BB (L2 ) (3.1.51)
B2 Q. ¢

is an important dimensionless parameter known as the plasma beta. The second
equation uses definitions of Chapter 2 and is accurate for a hydrogen plasma with
T, = T;. Coronae are usually low-beta plasmas (B < 1), the solar wind has a beta
of order unity or higher.

e In a stationary atmosphere with uniform or negligible magnetic field, Equa-
tion (3.1.50) yields

g% = —pg(h) . (3.1.52)

The right side is the gravitational force per unit volume. For constant g and in
isotherma) conditions, Equation (3.1.52) becomes the barometric equation having

an exponential solution
n(h) = n(h=0) exp(—h/H,) (3.1.53)
with a density scale height
=P 500100 L em (3.1.54)
Py 9o

where g is in units of the gravity in the solar photosphere (cf. Appendix C), T
is in degrees kelvin, and solar abundances have been used.
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3.2. MHD Waves

Waves are an important example of collective particle motion. Some or all particles
in a volume element are slightly displaced by a local disturbance, but a restoring
force — due to a pressure gradient, an electric or magnetic field, gravity, etc. — drives
them back to the initial position. They overshoot and oscillate collectively around
the equilibrium position. It is not the individual particle that is of primary interest,
but rather the collective phenomenon, the average properties of the oscillation, and
its propagation as a wave.

Spacecraft in the solar wind plasma have observed a bewildering variety of
oscillations. In general, the wiggling particle motions, electric and magnetic field
oscillations, and the combination of all three may be exceedingly complex. We
shall restrict ourselves to (i) small disturbances of (i) homogeneous, unlimited
background plasmas. Under these conditions the plasma oscillations occur in only
a few basic wave modes. These types of waves have characteristic polarization
(relations between the wave vector, the vectors of particle motion, and wave fields)
and dispersion relations (which relate the wave frequency w to the wave vector k).

There are two often neglected consequences of the fact that the equations of a
plasma are not linear: (i) The superposition of two solutions does not necessarily
solve the equations any longer; and (ii) the possibilities for waves are not exhausted
by finding all the periodic and small-amplitude (linear) solutions. Nevertheless,
we shall examine small-amplitude waves, as they exhibit the basic physics and
form the basis of our understanding of oscillatory plasma phenomena. They are
frequently sufficient for the description of waves.

Here we only derive the basic theory of MHD waves. More complete treatments
can be found in many specialized textbooks. The derivation of the wave modes in
the MHD approximation is valid at the low-frequency end of the spectrum. The
method, however, follows a standard pattern for waves in all regimes and will be
used similarly at higher frequencies. One first considers a plasma in equilibrium
and perturbs it slightly such that the deviations are much smaller than the initial
values. The main idea is to approximate the system of equations by a system that
is linear in the variables of the deviation. The resulting ‘linear’ disturbance is
analyzed to see whether it propagates as a wave having the form expli(k - x —wt)].
The goal of the mathematical discussion is to find the dispersion relation and the
polarization.

3.2.1. LINEARIZATION

The MHD equations (3.1.40) — (3.1.45) with the choice of the adiabatic equation
of state appropriate for most waves,

pp %% = const (3.2.1)

can be linearized by

B =B+ Bi(x,t), p=po+pi(x,t), V=Vi(xt) , (3.2.2)
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p=po+p(xt) , (3.2.3)

if the variables with subscript 1 (disturbance) are much smaller than the stationary,
homogeneous variables (subscript 0). These zero-order variab%es cancel out when
Equations (3.2.2) and (3.2.3) are inserted into the MHD equations. Let us assume
ideal MHD (o = oc) and combine the equations of Faraday and Ohm, (3.1.42)
and (3.1.45), to eliminate E;1. Upon neglecting the products of first-order terms,
we get a homogeneous system of linear equations,

0p1
L gV -V =0 (3.2.4)
5 + po 1
oV, 2B B, (Bo V)B1 _ 395
po—g Vip: + o ) in ( )
OB
V x (Vi x Bg) = — (3.2.6)
ot
p_bSm (3.2.7)
po 3p0

Counting equations and first-order variables, we find the same number. We now
show, as one would expect for linearized waves, that the equations do not determlpe
the amplitude of the disturbance. The temporal derivative of Equation (3.2.5) is

8%V, opr  Bo-&B1, (Bo- V)%Bl

g PVt T )T

in which we eliminate all first-order variables except V; using Equations (3.2.4),
(3.2.6), and (3.2.7),

+v( =0 , (3.2.8)

0*V,

5 1
Po ot2 _pogv(v : Vl) + Z;V[BO . (V X (V1 X BO))]

il (3.2.9)
- (4—7‘: V)V x (Vi x Bg)] =0

This equation describes the evolution of an arbitrary initial disturbance of the mass
flow velocity, Vi, in space and time. The amplitude of V1 is a constant facto.r in
space and time, and cancels. The other first-order variables can be evaluated in a
similar way. For instance, By can be found from Equation (3.2.6).

3.2.2. DISPERSION RELATION AND POLARIZATION (PARALLEL PROPAGATION)

Most wave equations like (3.2.9) look very complicated. Usually they' can be in-
terpreted by evaluating them for simple cases, like parallel or perpendicular wave
propagation to the magnetic field. These simplifications should not .be misun-
derstood as helpless attempts in the face of sheer complexity, nor as likely cases
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(other propagation angles to the magnetic field may be equally frequent). The
extreme cases and approximations identify important physics. Even the names
of waves refer to physical properties in simple limits rather than to a particular
mode. For this reason a mathematically identical wave (a particular branch of the
solution) may have different names at parallel and perpendicular propagation, at
low and high frequency. This may be surprising or confusing in the beginning, but
it indicates important differences in the physics of the wave.

We shall first solve Equation (3.2.9) for waves propagating parallel to the exter-
nal magnetic field, Bg, assumed to be in the z-direction. For simplicity we take the
disturbance as an infinitely extended plane wave with an amplitude independent
of space and time. Thus we write

Vi=Vi+Vi = (V; +V;)elhemen (3.2.10)

The bar indicates that the quantity is an amplitude. It will later be omitted when
no ambiguities are possible. The z coordinate in the exponent marks the only
spatial variation. It causes the phase of the wave to propagate in the positive
z-direction if ¥ > 0, and in the negative z-direction if ¥ < 0. We use here the
convention that the wave frequency is always positive. (Note that the inverse
convention, w < 0 and k > 0 for negative wave direction, is also widely used in
the literature).

Since Equation (3.2.9) is linear and the zero-order terms are constant, the
use of Equation (3.2.10) corresponds to a Fourier transformation. In fact, more
complicated cases can only be solved by the proper Fourier method. Plugging in
Equation (3.2.10) (or Fourier transformation) turns the derivatives into factors,

e — —iw, V — ik
Equation (3.2.9) becomes
k?B2

e pow?)Vi =0 . (3.2.11)

5
(3Pok” — pow?) VT + (

This relation must hold for any wave amplitude V; and Vi’, which are independent
of each other and arbitrary. For a non-trivial solution, either of the two expressions
in parentheses and the other amplitude must be equal to zero. The two possibilities
correspond to two wave modes studied below in detail.

From the first parentheses in Equation (3.2.11) we get

2

—=—-— = c . 3.2.12

" 30 s ( )

A connection between w and k as in Equation (3.2.12) is generally called a dis-
persion relation. The wave is named sound wave and the phase velocity of this
wave, w/k = ¢s, is the sound velocity. The restoring force, as indicated by the
numerator, is a gradient in pressure. The factor 5/3 is the ratio of specific heats
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corresponding to the 3 degrees of freedom of each particle in a plasmfu.1 In a com-
pletely ionized plasma with solar abundances ¢; = 1.51 : 10T [cm s™1], w‘here T
is in degrees kelvin. The group velocity of the wave, being the speed at which the
wave energy is carried, equals Ow /0k and in this case is also cs. '

The second expression in parentheses in Equation (3.2.11) describes a com-
pletely different wave,

i By = c4 . (3.2.13)
k2 4 Po
The wave exists only if Bg # 0. It is the Alfvén wave, named after its discoverer
who received the Nobel Prize in 1969 for this and other contributions. (It is also
called the shear Alfvén wave to distinguish it from the compressional Alfvén wave
introduced later.) The phase velocity of the waves, ca, is called the Alfvén velocity.
We shall use the relation c4 &~ c(me/ mp)l/ Q) /w;, for a hydrogen plasma, and, for
solar abundances, its numerical value 2.03 - 101 Bo/y/n, [cm s, .
What is the difference between the two wave modes? Let us investigate their
polarization (meaning the directions in which the sinusoidal disturbances oscillate).
The sound wave has an amplitude V{ and the particles oscillate only in the z-

direction,

V. = Vieellhs=ot (3.2.14)
where e, is the unit vector in the z-direction. Such a wave in which the particles
oscillate in the direction of propagation is called longitudinal. Since V7 is parallel
to By, it follows from Equation (3.2.6) that

—inl = ikez X (Vl X Bo) =0 . (3.2.15)

Faraday’s equation and Equation (3.2.15) also require that E; = 0. Equations
(3.2.4) and (3.2.7) give

k

= By (3.2.16)
mM Pole
5 k
= 2payE 3.2.17)
pr=gpo Vi (

Thus a sound wave parallel to Bo does not cause any electric or magnetic distur-
bances in a plasma, but oscillates in density and pressure like in a neutral gas.

These waves are purely hydrodynamic. . . .
On the other hand, the particles in Alfvén waves oscillate in transverse motion

to the magnetic field and the direction of propagation, since
V, = Vyeitbz=et (3.2.18)

The magnetic disturbance is perpendicular to Bg and 180° out of phase with V7,
as it follows from Equation (3.2.6) that
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1 ign(k)kB
By = — Lk x (v, x By) = - S&MKkBoy, (3.2.19)
w w
c .
Jl = Ezkez X B1 . (3220)

However, from Equations (3.2.4) and (3.2.7), we find

p1=0 and p; =0 . (3.2.21)

Alfvén waves are therefore purely magnetodynamic, and the perturbations do not
compress the plasma. They cause an oscillating ripple on the magnetic field line
and may be compared to oscillations of a violin string. As suggested by the
expression (3.2.13) of the phase velocity, the restoring force is magnetic tension,
B2/4m, indeed analogous to strings. It is the result of the magnetic gradient
term in the equation of motion (3.2.5). Alfvén waves are most unusual in that
they are also solutions of the full, non-linear equations, as can easily be shown
by substitution. For this reason, the dispersion relation of Alfvén waves does not
change for large amplitudes, and the wave does not dissipate energy by non-linear
effects. As an important consequence, Alfvén waves can transport energy over
long distances, even if the plasma changes gradually, as in a corona.

3.2.3. PERPENDICULAR PROPAGATION

Let us now look at the case where the waves propagate in the z-direction with By
still in the z-direction,

Vl _ (v:;: +v1{ +V‘lz)ei(k.z‘—wt) : (32.22)

This is representative of all perpendicular waves without loss of generality. Anal-
ogous to the parallel case, Equation (3.2.9) gives

5 k*B2
(—p0w2 + §p0k2 + ?O)V:f + (~p0w2)V71’ + (—pow2)Vf =0 . (3223)
Again the zeros of the expressions in parentheses are solutions for wave modes. For
the second and third expression we find w = 0; there is no MHD wave perpendicular
to By with transverse (L B) particle oscillation. We have a mode from the first
parenthesis with

w®  Bbpy  Bj/4m

k> 3po Po
The wave is longitudinal and possesses a combination of acoustic and electromag-
netic properties. It is named a fast magnetoacoustic wave since it is faster than
both sound and Alfvén waves. It is a longitudinal wave. For ¢; — 0, the fast
magnetoacoustic wave does not behave like the Alfvén wave derived in Equation
(3.2.13), although w/k = c4. It is then called the compressional Alfvén wave.

= c2+cy . (3.2.24)
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3.2.4. GENERAL CASE

Having explored the physics of the waves in the simple cases of paralle% and per-
pendicular propagation, we now look at the intermediate angles to outline briefly
how the modes change with angle. The three modes found for parallel and perpen-
dicular directions keep their identity in the general case of skew propagation. This
may have been expected from the fact that the disturbances of t.he three waves
are mutually perpendicular in parameter space. However, the physics of the waves
changes considerably.

1.0

cafes =1/\/_/\
0.5+
|

-1.0 |

Fig. 3.1. Polar diagram of vector phase velocities. The length of the radius vector at an inclir.la—
tion angle @ to the equilibrium magnetic field equals the phase speed (w/ éc)lf(;r waves propagating
in that direction. Speeds have been normalized with respect to (¢ +¢2) /2,

In non-parallel directions, sound waves are not purely longitudinal, and tbe
Lorentz force takes part in the oscillation through magnetic tension and magnetic
pressure. The pure sound wave is a singularity of the parallel and B = 0 cases.
At a general angle, the mode has a magnetoacoustic nature. However, it does not
necessarily coincide with the fast magnetoacoustic mode! _

In the parallel direction and for c4 > ¢s, the fast magnetoacoustic wave prop-
agates at the Alfvén velocity and becomes a purely transyerse \'Nave.dnven by
magnetic tension. It produces no compression and is physically identical t<? the
Alfvén wave (right part of Figure 3.1). However, for ca S cs (lef.t part of Figure
3.1) the fast magnetoacoustic wave in the parallel directiorll is identical to t.he sound
wave. Except for the singularities at parallel and perpendicular propagation, there
is always a fast and a slow magnetoacoustic mode. .

The phase velocity of the Alfvén wave approaches zero at pgrpendlcular ph:fmse
velocity, since the relevant field component of the magnetic tension decreases with
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the sine of the inclination angle. Its speed is intermediate and always faster than
the slow magnetoacoustic mode. The name ‘intermediate mode’ is not commonly
used for linear Alfvén waves, but for non-linear waves (Chapter 9). The slow
mode at parallel propagation can be a sound wave or an Alfvén wave, depending
on the ratio of ca/c;. Note that the expressions ‘slow’, ‘intermediate’ and ‘fast’
are mostly name tags of mathematical solutions and do not express the physics of
the waves.

Figure 3.1 summarizes the phase velocities of the three MHD modes for differ-
ent inclinations to the magnetic field and two values of the ratio of Alfvén speed
to sound speed. In general, the group velocity, dw/0k, has different values and
directions from the phase velocity. A remarkable example is formed by the Alfvén
(intermediate) waves whose group velocity is always field aligned and thus carries
energy only along B regardless of the inclination of k .

Some physical properties persist over all angles and ca/c, ratios. For fast and
slow waves both V; and B; remain in the plane defined by B and k. On the other
hand, V; and B; of the Alfvén waves are perpendicular to this plane. For the
fast mode, the magnetic pressure and the density always oscillate in phase, but
magnetic pressure and density oscillations are 180° out of phase in the slow mode.

Exercises

3.1: Assume a highly ionized hydrogen corona in equilibrium at rest (V¢ = VP =
0) with p. = pp. Prove that the gravity of the star creates an electric field

1 1
eE = E(mp —Me)g R~ 3MpY (3.2.25)
in the upward direction. It prohibits the sedimentation of the heavier protons
at the bottom of the corona, as one would expect for an atmosphere of neutral
particles. Compare the force (3.2.25) to the Lorentz force F, = eBv/c, where
v/c ~ 1/100 for a thermal electron in the corona and B =~ 1 G.

3.2: Calculate § (plasma beta) at the site of a flare before the energy is released,
assuming thermal equilibrium and pressure equilibrium, an electron density
of 10'% ¢cm~3, a magnetic field of 100 G, and a temperature of 5 - 106 K. Let
us first assume for simplicity that the flare locally increases only the elec-
tron temperature by a factor of 100 and leaves the other plasma parameters
unchanged (neglect non-thermal particles). What is now 3 and what is the
consequence? Assume solar abundances, thus n; = 0.92 n.. What would
happen if only the local magnetic field were annihilated?

3.3: Describe the properties of the slow mode MHD waves traveling parallel to B
for both ¢4 > ¢; and ¢4 < c¢,.
3.4: Prove that in an ideal and non-relativistic MHD plasma the ratio of electric

energy density to magnetic energy density is always (V. /c)?, and show that
the kinetic and magnetic wave energy are equal for an Alfvén wave.
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