CHAPTER 2

BASIC CONCEPTS

With the ever more detailed and profound observations of the universe, we have
become exposed to a vast field of coronal phenomena in the formation, activity,
and late phases of stars. However, coronal physics poses some unexpected, recon-
dite difficulties to the beginner and to the uninitiated astronomer in particular.
The fundamental principles are simple: Maxwell’s equation of electrodynamics and
Boltzmann’s equation of statistical mechanics (Chapter 1). On the other hand, the
complexity of plasma phenomena is bewildering. The pioneers of plasma physics
have had similar experiences; they have subdued some of the problems with elegant
approximations, clever tricks, and deep insights. Their ideas have been checked in
the laboratory, the solar wind and the magnetosphere, and the results have initi-
ated new developments. The beginner should try to understand the fundamental
concepts and the range of their applicability, even if they later seem to be outshone
by brilliant mathematics or covered up by cumbersome algebra.

2.1. Single Particle Orbit

It will be shown in Section 2.6 that the collision time increases with particle veloc-
ity. Therefore, the assumption of a single particle moving in a vacuum, permeated
by magnetic and electric fields, is particularly relevant for energetic particles, which
can reach large distances before being deflected by collisions with the thermal back-
ground particles. In other words, they feel primarily the large scale electric and
magnetic fields created by background particles, but have little stochastic interac-
tions with individual particles.

The orbit of just one single particle in time-varying, spatially inhomogeneous
electromagnetic fields is already a problem of considerable complexity. In this
section we only consider the more elementary principles.

2.1.1. HOMOGENEQUS MAGNETIC FIELD

Magnetic fields are ubiquitous in stellar coronae (Figure 1.2). The fields are related
to currents driven by sub-photospheric motions. Hindered by the high conductivity
of a plasma atmosphere, coronal magnetic fields can change only slowly. The
field lines guide the motion of charged particles and have an important physical
meaning.
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Let us start with a particle moving in a stationary, homogeneous magnetic
field. We assume that no other charges and fields interact with our particle. The
equation of motion (1.4.1) then reduces to

W - %(v xB) . (2.1.1)
As the Lorentz force is perpendicular to the velocity, the motion can be regarded
as a superposition of a circular orbit perpendicular to the magnetic field and a
straight, inertial movement parallel to the field. The circular motion is called

gyration. The gyroradius R follows immediately from Equation (2.1.1),
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which we define more generally as a vector,
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Fig. 2.1. The orbit of an electron in a homogeneous magnetic field.

The subscripts | and z denote components perpendicular and parallel to the
magnetic field, respectively. Throughout the book the local coordinates are chosen
such that the z-axis is parallel to B.

The gyration resulting from Equation (2.1.1) is counterclockwise for a positive
charge when viewed along B, and clockwise for an electron. As a consequence,
the radius vector R always points from the center of the circular motion to the
particle, independently of the sign of g. Furthermore, the gyrofrequency is defined
in vector notation as

0=-1B . (2.1.4)
myc

In this chapter we limit ourselves to non-relativistic phenomena, and we shall put
v =1 in the following. We note that the gyrofrequency (Eq. 2.1.4) then becomes
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independent of velocity and equal for all particles of a species. The gyrofrequencies
of the various species are characteristics of a plasma and will play an important
role in the theory of waves (Chapter 4). In Equations (2.1.3) and (2.1.4) vectors
have been defined to simplify the mathematics later. They are drawn in Figure
2.1, which depicts the spiraling orbit of an electron, the combination of parallel
and circular motion.

No work is done by the Lorentz force, as it is perpendicular to the orbit. An
important result of the gyration is the electric ring current due to the circular
motion of the particle. It is charge per time, thus

g9

<I>="— . (2.1.5)

This ring current is the cause of a magnetic moment of a particle defined by
q
==—(R . 2.1.
pi= 5o (R xvy) (2.1.6)

Its absolute value is

wR? imov?
= <I>=2_=

K c B
The magnetic moment induces a secondary magnetic field, Bind, which has the
form of a dipole in the far field (at distances r > R). For example, in the axis of
the particle orbit, the induced field has the value B¢ = 2ur~3. There are two

important points to note in Equation (2.1.6):

e The magnetic moments of positive and negative charges are pointing in the same
direction. The induced magnetic fields of all particles add constructively.

(2.1.7)

e The directions of B"d and B are antiparallel. The induced field counteracts the
primary field and reduces the total field in the plasma. This diamagnetism of a
plasma, has far-reaching consequences (see example below).

Fig. 2.2. Monoenergetic electrons accelerated in a magnetic field form a cylindrical shell (called
E-layer, shaded) and deform the field.
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The Astron machine in fusion research may serve as an illustration (Fig. 2.2).
Energetic electrons are injected into initially parallel magnetic field lines. These
electrons circle in a cylindrical shell, termed the E-layer. Their diamagnetism re-
duces the field inside the E-layer and adds to the field outside. Thus the magnetic
field forms a ‘magnetic bottle’, shown in Section 2.2, which is suitable for confine-
ment. The Astron configuration makes use of the diamagnetism of the injected
electrons to confine ions. Heating or acceleration of particles in coronal loops may
lead to similar effects.

2.1.2. INHOMOGENEOUS MAGNETIC FIELD

We now look at a particle in a converging magnetic field as sketched in Figure
2.3. Similar field geometries may exist near the footpoints of coronal loops or
in the polar regions of stars and planets. The magnetic field at the particle’s
instantaneous position can be decomposed into a component, B, parallel to the
field at the center of the gyration, and a perpendicular component, B,. The
Lorentz force on the particle can also be written in two components:

Fp, = g(vL xB,) , (2.1.8)

)

Fr.= %(VJ_ xB,) . i (2.1.9)

The first, Equation (2.1.8), is the radial force component analogous to the homo-
geneous case. Equation (2.1.9) describes a force along the axis of the spiraling
particle motion. It can be evaluated from V-B = 0 (Eq. 1.4.4), which in cylin-
drical coordinates becomes:

0B,

5. =0 (2.1.10)
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Fig. 2.8. Particle motion in a converging magnetic field produces a Lorentz force Fr ., in the
opposite direction.




26 CHAPTER 2

Let us consider the case where r is much smaller than the scale length of the
derivative of B, (r < |B./(8B./0r)|, where B, := 8B,/0z). In such a mildly
inhomogeneous field, Equation (2.1.10) can be integrated approximately to

1 0B,

B, ~ —3ra (2.1.11)
Inserting in the gyroradius (Eq. 2.1.2) for 7, Equation (2.1.9) yields
0B,
F z = — . .
L, h (2.1.12)

For example, 8B, /8z > 0 (a converging field as in Fig. 2.3) produces an F; in
the negative z-direction. It slows down the parallel velocity of a particle moving
along the converging field and can reflect the particle into the opposite direction.
In Section 2.2 we shall take a first look at the possibility of trapping particles by
such ‘magnetic mirrors’.

2.1.3. CONSERVATION OF THE MAGNETIC MOMENT

We shall show in this section that in a mildly inhomogeneous, stationary magnetic
field the magnetic moment of a particle is a constant of motion. It is generally
sufficient to require that |(R - V)B| < |B| and B, < B,. We neglect collisions,
electric fields and other forces. With F, = mt, we derive from Equation (2.1.12)
the rate of change of the parallel energy component,

musp, = —pop 9z _ 9B 2.1.13)
Ve = Hea - Mar 21
The forces are evidently perpendicular to the velocity components (Egs. 2.1.8 and
2.1.9); thus the particle energy is conserved,

d . 1 1
E(émvf + Emvf_) =0 . (2.1.14)

Inserting (2.1.7) and (2.1.13), one obtains

_ dB
Wt
Since B # 0 by assumption, it immediately follows that

+ 2wB)=0 . (2.1.15)

dp
7 =0 . (2.1.16)
It is also instructive to consider the conservation of the magnetic moment from
a different point of view. Since the transverse motion is periodic, an action integral
J = [pids; can be defined, where p, is the transverse momentum and ds; is
the perpendicular component of the gyration path. It is easy to show that p,
and s, satisfy the conditions of canonical coordinates. The integration is over a
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complete cycle of s, i.e. over one gyration. The action integral for the transverse
part of the motion is

4mme

J = (2.1.17)

Theoretical mechanics proves that, if a system changes slowly compared to the
period of motion (and is not in phase with the period), an action integral remains
constant. Such a variation of a system is termed adiabatic, and action integrals
become adiabatic invariants.

In our case the system consists of the magnetic field and the particle. If the
particle moves through a region where the magnetic field varies slowly, Equation
(2.1.17) confirms that the magnetic moment is conserved. In addition to spa-
tial variations, the magnetic moment is also conserved during temporal changes
of magnetic field strength. This property can accelerate particles: Consider an
increase of B, say by compression, at a rate well below the gyrofrequency. The
perpendicular part of the particle energy must then increase in proportion to B
according to the definition of 4 (Eq. 2.1.6). Such an energy increase is generally
referred to as betatron acceleration and will be applied in Section 10.3.3.

The magnetic moment y is the ‘most invariant’ action integral of charged parti-
cles. The obvious analogue to Equation (2.1.17) for periodic motion in a magnetic
mirror is the longitudinal invariant,

L= pL , (2.1.18)

where L is the mirror length. It may be used in connection with Fermi acceleration
(Section 10.3.1).

2.1.4. PARTICLE DRIFTS

Our next step in understanding single particle orbits is to include some other
stationary force, F, in addition to the Lorentz force of the magnetic field. As
its parallel component to the magnetic field, F,, accelerates the particles into a
direction where they are freely moving, which is trivial, we concentrate on the effect
of F,. In the non-relativistic limit, the perpendicular component of Equation
(2.1.1) is

dv 1

q
— = = BY+F,/m . 1.1
dt mc(vl xB)+ </ (2 9)

This is a linear, inhomogeneous, first-order differential equation in vy . The theory
of such equations prescribes that its general solution is simply the superposition
of one particular solution, say w¢, of the full equation and of the general solution,
u, of its homogeneous part (Eq. 2.1.19 without the F; /m term). Thus

vi=wltu . (2.1.20)

Using the general vector identity (A.9),
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(FxB)xB _(F,-B)B—(B-B)F,
e = = =-F, , (2.1.21)
it can be shown that the form
d __ c F_j_ x B
W= aT (2.1.22)
is a solution of Equation (2.1.19). The homogeneous equation
du q

describes the action of the Lorentz force on the particle, but in the frame of
reference moving with velocity w?. Equation (2.1.23) represents a motion without
the additional force. Its solution, u, is the circular velocity around what is called
the guiding center. The velocity of the guiding center is simply

vie=witv, . (2.1.24)

large vy — large R

fr.

small v — small R

® B

Fig. 2.4. A perpendicular force F on a gyrating particle causes a drift perpendicular to F
and B.

This tells us that the perpendicular force results in a drift w? perpendicular to
the magnetic field, in addition to the previously introduced gyration and parallel
motions. The reason for this drift can be visualized in Figure 2.4. The force ¥ |
accelerates the particle in the upward direction in Figure 2.4. It is therefore faster
in the upper part of its orbit. The gyroradius increases with velocity (Eq. 2.1.2).
The opposite occurs in the lower part of the figure. The effect of the variation of
the gyroradius is a drift to the right (assuming a positive charge). An analogous
effect, called gradient drift, occurs when the magnetic field strength increases in
the downward direction of Figure 2.4 and reduces the gyroradius in the lower part
of the orbit. In homogeneous magnetic fields and in the absence of other forces,
collisionless particles are bound to a particular field line like pearls on a string.
Drifts, however, can move the particles across field lines and spread them out
from their original line to a larger volume. In the following, we discuss some key
examples of particle drifts.

BASIC CONCEPTS 29

A. Flectric Field

Let there be a stationary electric force

Fp=qE . (2.1.25)
The drift velocity resulting from Equation (2.1.22) is
ExB
wp = e—=; (2.1.26)

This is generally known as E X B drift. We note that wg is independent of
charge, mass, and velocity. As it is identical for all particles, the electric field
can be ‘transformed away’ by a Lorentz transformation into a suitable frame of
reference. This coordinate system moves with velocity wg, it is the rest frame of
the E x B drifting plasma. Since B is perpendicular to wg, the magnetic field in
the moving frame of reference is the same. The E x B drift can be viewed as the
moving plasma carrying along its embedded magnetic field.

B. Gravitational Field
Let gravity be given by a gravitational acceleration g and

F,=mg . (2.1.27)
According to Equation (2.1.22) it causes a drift

_mc gxB

M

Note that ions and electrons drift in opposite directions. Gravitational drift pro-

duces a current! As the drift velocity, wg, is proportional to mass, the current

consists mainly of perpendicularly moving ions. A well-known example is the ring

current in the terrestrial ionosphere, where the observed ion drift velocity is of the
order of 1 cm s™1, in agreement with Equation (2.1.28).

(2.1.28)

C. Curved Field Lines
In a curved magnetic field a ‘centrifugal force’ may be defined, simulating the
effect of particle inertia. The centrifugal drift becomes

2
me vs
We = L B x (B-V)B] (2.1.29)
(Exercise 2.1, below) and depends on the ratio of particle energy to charge. It has
different signs for electrons and ions. The resulting current is perpendicular to the
magnetic field and is directly related to the field curvature by Ampere’s equation

(1.4.2).
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2.2. Particle Trapping in Magnetic Fields

A considerable fraction of the energy released in solar flares (estimates range from
0.1 to 50%) resides temporarily in electrons with energies far above thermal. Such
particles could easily escape from the corona without collisions if they were not
hindered by the magnetic field. In fact, only 0.1 to 1% of these electrons are
later found in interplanetary space. This evidently reflects the predominance of
loop-shaped magnetic field lines in the corona and, particularly, in active regions
where flares generally occur. ‘Open’ field lines, which connect the active region
to interplanetary space, seem to be rare or extremely well shielded from the site
of acceleration. (Note that the widely used term ‘open field line’ is a misnomer,
since in the absence of magnetic monopoles and in a finite universe all magnetic
field lines must eventually close and return from space to the Sun. Nevertheless,
such field lines can easily have a length exceeding the diameter of the Galaxy, and
they are quantitatively different in this respect from ‘closed’ field lines, returning
within the corona, or within about one solar radius: see Fig. 2.5)

photosphere
NN NNN

Fig. 2.5. Schematic drawing of ‘closed’ magnetic field lines forming loops between photospheric
spots of opposite polarity.

Most energetic particles are apparently guided back to the Sun by ‘closed’ field
lines. Some of them immediately penetrate denser plasma or even the chromo-
sphere, where they rapidly lose their energy by collisions, emitting bremsstrahlung
in hard X-rays. Others, however, remain in the corona up to several minutes, as
some microwave emissions (around 3 GHz) and decimetric continuum bursts (0.3
- 3 GHz) indicate. The flare microwaves originate primarily from relativistic elec-
trons (Section 1.2.3), and trapped electrons seem to play a role in long duration
events. Decimetric continuum radiation is generally interpreted as coherent radi-
ation of trapped electrons (Chapter 8).

Magnetic trapping can be understood as the result of conservation of the mag-
netic moment. The condition of smooth and only slowly varying magnetic field
lines is easily satisfied in practically all we know about solar and stellar atmo-
spheres. According to Equation (2.1.16), the magnetic moment
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_ gl
H="8
Assuming a stationary magnetic field, no work is done by the Lorentz force. Thus
the particle energy is also conserved,

= const . (2.2.1)

v? =02 + 02 = const . (2.2.2)

Let us consider a system of looped magnetic field lines, typical of solar and
stellar spots (or magnetic poles of opposite polarity), sketched in Figure 2.5. The
field strength has a minimum near the top of the loop and is assumed to increase
toward the photospheric footpoints. If a charged particle spirals in the direction
of increasing field strength, it experiences an opposing component of the Lorentz
force (given by Eq. 2.1.9), reducing v,. This may continue until v, = 0, when
the particle changes the sign of its parallel velocity and is reflected. The magnetic
field strength at the mirror point, B, can readily be calculated from Equation
(2.2.1),

2
v
Bmp = BO (’U_O) . (2.23)
1
The subscript 0 refers to a given point in the orbit, for instance to the top of
0 top

the loop, where the particle has a perpendicular velocity component v .= v ",
Equation (2.2.2) requires the perpendicular velocity at the mirror point to equal
the initial total velocity v.

Let Bgep be the magnetic field strength at the critical height below which parti-
cles are not mirrored but lost by collisions. The altitude of the separation between
collisional and collisionless behavior is somewhere in the upper chromosphere or
transition region. If By, < Bsep, the particle is reflected before entering the re-
gion of rapid collisions. Provided that this is also the case at the other footpoint
(where the field strength may be different), the particle remains trapped in the
corona. The coronal collision times are about five orders of magnitude longer
than in the chromosphere (Figure 1.9, but note that super-thermal particles have
a much longer collision time, as will be shown in Section 2.6). Then the particle
bounces between the mirror points. The full bounce period 7 in a parabolic field
(like the far field of a dipole, B = Byp(1 + s2/H%), where s is the path length
measured from the top of the magnetic loop), is independent of the initial parallel
velocity, since the larger v°P is, the farther away is the mirror point. One derives

27H
T = Ut—OPB . (2.2.4)
il
The proof of Equation (2.2.4) is left to an exercise (2.2). The geometric parameter
Hp is related to the loop length L {say from chromosphere to chromosphere) by

Hy ~elss (2.2.5)

! Bsep _
V By 1




32 CHAPTER 2

Bsep/Btop is called the mirror ratio. It has been estimated from soft X-ray obser-
vations to be in the range of 2 — 10 for solar coronal flare loops.

If Bpnp > Bsep, the particle penetrates the chromosphere and is lost from the
trap. Equation (2.2.3) then states that trapping or precipitation depends only on
the ratio v/ vtfp, or the particle’s pitch angle, atop. The pitch angle is defined by
the angle of the orbit to the magnetic field,

0
ao = arcsin(=) . (2.2.6)
v

The particle is trapped if the initial pitch angle is larger than the critical value
given by arcsin(Biop/Bsep)'/?. A critical pitch angle a. can be determined from
Equation (2.2.6). It is given at every point in the loop by the local magnetic field
strength By and amounts to

By
Bsep

If the pitch angle is below this value, the particle will get lost with high probability
before reflection.

The velocity distribution of magnetically trapped particles has characteristic
cones with half-angle o, and axes in the positive and negative v,-directions, where
the number of particles is strongly reduced. They are known as loss-cones. Figure
2.6 shows a typical observation of protons trapped in the Earth’s dipole field with
a clearly developed loss-cone. The thermal, collisional background plasma forms a
nearly isotropic distribution in the center. Velocity distributions with a loss-cone
can be expected whenever particles are mirrored in a converging magnetic field
within less than a collision time. Particles outside of the loss-cone are trapped
if their mean free path exceeds the size of the magnetic configuration. This is
well-known to occur in the tenuous plasmas of planetary magnetospheres and the
solar and stellar coronae, but can also be expected in the atmospheres of white
dwarfs and neutron stars, in galactic magnetic fields, etc.

Loss-cone features are more than identification tags of trapped particle popu-
lations. They are an important deviation from thermal equilibrium. Even if the
rest of the velocity distribution is Maxwellian, loss-cones constitute free energy.
In Chapter 8 it will become clear that this free energy can be tapped by plasma
instabilities causing various types of observable emission.

(2.2.7)

a.(By) = arcsin

2.3. Generation of Beams

The previous section introduced the imprint of the magnetic field’s spatial struc-
ture on the velocity distribution. Here we consider temporal changes of the distri-
bution and study how they propagate in space. In the absence of collisions and any
other forces, the particle distribution at a place x+Ax and time ¢ is determined
by the distribution at x and t — At, where v = Ax/At is the particle velocity.
Thus
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perpendicular velocity {107 cm/s]

parallel velocity [107 cm/s]

Fig. 2.6. Contour plot of proton velocity distribution observed by the VIKING satellite in the
Earth’s magnetosphere. The theoretical loss-cone angle given by Equation (2.2.7) is indicated
(dashed). Contours are separated by a factor of 3.2 (5 dB) (after Bostrém, Koskinnen, and
Holback, 1987).

flx+ Ax,vt) = f(x,v,t —At) . (2.3.1)

Let us use this simple model to outline the evolution of a local disturbance in
velocity space. Example: Consider the rapid heating of a fraction of the particles
to a temperature T}, > T, the temperature of the ambient medium. We take only
one hot particle species for simplicity, which we assume to have a Maxwellian dis-
tribution. Since charged particles propagate along field lines (neglecting gyration
and drifts), the problem can be reduced to one dimension (the z-direction). Let
the number of hot particles at zp now increase exponentially with a time constant
7. Their distribution f at the heating site is a Maxwellian function multiplied by
an exponential function,

n
flzo,v,t) = \/2_7:Uth exp (—v*/2v},) - exp (;) . (2.3.2)
With this expression, the mean thermal velocity in one velocity component and
the temperature T are related by vy =: (kpTh/m)Y/? (kg is the Boltzmann
constant). The subscript ¢ stands for thermal, h stands for the hot population.
Using Equations (2.3.1) and (2.3.2) it is straightforward to derive the hot particle
distribution at a site zg + Az outside the heating region from the distribution at
2o shifted by ~At =—Az/v,
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t/T A
flzo+ Az,v,t) = 400 exp (—v2/2vfh - ——z-) . (2.3.3)
2T, vT

The velocity dependent part of Equation (2.3.3) — the exponential function — is
plotted in Figure 2.7 for various normalized distances £, where

¢ = B2 (2.3.4)
VtpT

The curve £ = 0 represents the initial distribution in the heating region given in
Equation (2.3.2). At £ > 0 a hump appears in velocity space. It has a maximum
at

Vmax = &30 . (2.3.5)

The evolving particle beam is simply an effect of spatial dispersion or, plainly, of
fast particles arriving first. The average velocity increases with distance at the
expense of beam density. The beam amplitude decreases, since the larger &, the
earlier in the heating event the particles have originated. The gap at v = 0 for
£ > 0 expresses that the slowest particles have not yet arrived.

: T r

0.3F /\\ \\f —o d

0.2r

normalized distribution

velocity {v/v,,]

Fig. 2.7. Particle velocity distributions due to a local heating at £ = 0 for various distances &
from the heating region at any given time ¢ > 0.

The simple model lacks many problems encountered in reality. Equation (2.3.1)
obvicusly cannot describe a situation where forces act on the particles. Particle
conservation in the presence of electromagnetic forces is expressed by the Boltz-
mann equation (1.4.11). It can be shown (Exercise 2.3) that Equation (2.3.1)
follows from the Boltzmann equation under simplifying conditions. There are two
major shortcomings of the simple model, which are briefly mentioned here and
which will later be discussed in greater detail:
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e Most importantly, an electric field builds up if the evaporating particles carry a
charge. The electric field decelerates the particles of the beam and accelerates
background electrons to form a return current. In the absence of friction (colli-
sions) between background electrons and ions, the electric field is minute, and
return current and beam current cancel each other. For large beam currents the
frictional loss of the return current becomes an important energy drain of the
beam.

e If the peak velocity, vmax, of the beam exceeds about three times the thermal
velocity of the ambient population, interactions of beam particles with Langmuir
waves come into play (Section 5.2). Kinetic particle energy is transferred to
oscillating electric fields and substantial energy is lost. Beam-wave interactions
have received great interest since electromagnetic emission of the enhanced waves
has been observed in solar radio bursts (Section 5.1).

‘We note that particle beams, as developed in this section, constitute an energy
loss of the hot region not included in first-order heat transfer. First-order thermal
conductivity is calculated from small deviations of a Maxwellian distribution in
the presence of a temperature gradient. Collisionless particles can shorten the
cooling time far below first-order calculations.

2.4. Debye Shielding

Up to now we have singled out a particle and calculated its orbit, neglecting
interactions with other particles. In this and the following section we consider two
fundamental collective properties of a plasma. They are both consequences of the
presence of free charges of opposite sign.

How do the other particles react to the presence of a charge? Let us calcu-
late the disturbance using classical statistics (see Fig. 2.8). In thermodynamic
equilibrium the kinetic particle energy ¢ is distributed according to Maxwell (Eq.
2.3.2),

g
fole) = k—Texp(—e/k'BT) . (2.4.1)
B
Now we introduce into the plasma a particle (referred to as the ‘test particle’)
with charge Q creating a potential ®(r). If another particle (‘field particle’) with
mass m and charge q approaches the first particle, its total energy is conserved.
It remains at the value €., it had at large distances,

€+ qP(r) = 5 = const . (2.4.2)

The energy distribution of the field particles also remains constant, but now kinetic
and potential energy have to be summed. The energy distribution for field particles
with charge ¢ becomes

Fle,r) = kl;T-exp[—(a +q®)/ksT] (2.4.3)
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The density is given by the normalization

n(r) = / fle,r)de = ng exp(—q®(r)/kpT) . (2.4.4)
0
Equation (2.4.4) describes how the density of the undisturbed field particles, no,
is modified by the potential of the test particle. Elementary electrostatics relates
® to the electric charge density p* by Poisson’s equation,

—V2® =V E =dmp* . (2.4.5)

i

Fig.2.8. A field particle with charge ¢ experiences the potential ® of the test particle and
(assuming the same sign of the two charges) loses kinetic energy. The total energy of the field
particle (dashed line) is conserved.

The charge density p* has been defined in Equation (1.4.6) and is given by the
sum over all species «,

pF = anna . (2.4.6)

As an example we now look at a hydrogen plasma with equal electron and
proton temperatures. The undisturbed electron density equals the proton density.
Now we disturb this equilibrium with the test charge. Using Equation (2.4.4) and

*

p* = —e n. + e ny, the charge density becomes

p* = englexp(—e®/kpT) — exp(+e®/ksT)] . (2.4.7)

A Taylor expansion of the exponential for e®/kpT < 1 in the region of interest
immediately yields for Equation (2.4.5)

drnge?
kT

V2 =2 ® . (2.4.8)
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It is easy to generalize Equation (2.4.8) for a plasma of composition different from
hydrogen. Y, Z2n, then takes the place of 2ng, where the sum is over all particle
species . Equation (2.4.8) is a second-order differential equation in ®. It can be
solved in spherical coordinates by trying the form ®(r) = g(r)/r, and yields

B(r) = ; exp(—v2r/Ap) (2.4.9)

where a ~ @ follows from the boundary condition on the test charge (assuming
this charge to reside on a sphere with radius 7o and 3 < A%). In Equation (2.4.9)
we have defined the ‘Debye-Hiickel shielding distance’, Ap, usually termed the
Debye length for short. It is one of the characteristic lengths in a plasma and
amounts to

| kT T
A = — = 0. —_— 4.
D=\ T nae? 6.654/ e [cm] , (2.4.10)

where T is in K, and the electron density n, is in cm—3. A fully ionized multicom-
ponent plasma with solar abundances (27% helium by mass) has been assumed for
the numerical expression in Equation (2.4.10).

T T

KA
=
8
=]
g 1/r
3]
o,
}e'ﬁ’/ Ap vacuum
, plasma
To AD
. r
distance r

Fig. 2.9. The electric potential of a test charge Q is reduced by the ambient plasma. Here the
positive test particle is shielded by field particles of negative charge and by a reduced number of
ions in its vicinity.

Equation (2.4.9) means that the electric force of a charge is limited in a plasma
to about the Debye length. Particles with opposite charge slightly predominate in
its environment, and neutralize its effect (see Fig. 2.9). Only particles separated
by less than about Ap feel the test charge. Of course, the test charge can be any
arbitrary particle, and the conclusion is more general: only particles within Ap
are directly influenced by each others’ electric fields. The limitation of the direct
influence of a charge has far reaching consequences and makes the behavior of a
plasma entirely different, for example, from a cluster of gravitationally interact-
ing stars. Since gravitational attraction is not shielded by repulsive forces, it is
unlimited in its reach.
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With Q = e and ro < Ap our approximation of Equation (2.4.7) at r > Ap is
satisfied with

4

3
The left-hand side is the number of particles in a sphere of radius Ap (termed the
Debye sphere) in the undisturbed plasma. It is intuitively clear that this number
must exceed unity, as required in Equation (2.4.11), to make Debye shielding work.
Assumption (2.4.11) is called the plasma approximation.

Debye shielding is usually very efficient in a plasma. For example, in a corona
with ng = 108cm™ at a temperature T = 10° K, Ap ~ 0.7 cm; and the number of
particles in the Debye sphere is about 108, amply justifying our condition (2.4.11).

This process also provides an effective mechanism to prevent local charge ac-
cumulation. A concentration of charges of one sign (say electrons) in a region of
a plasma would create local electric fields, acting toward the restoration of homo-
geneity. For e® < kgT the effect of the electric field on the velocity of the field
particles is small. The Debye shield builds up mostly by thermal motion: some
particles (with opposite charge) remain near the test charge slightly longer, while
others (with the same sign of charge) pass by a bit faster. Charge inhomogene-
ity, as introducing an additional charge, is eroded in this way within a thermal
propagation time.

nodh > 1 . (2.4.11)

2.5. Charge Oscillations and the Plasma Frequency

In addition to spatial shielding, the plasma species of opposite signs can also lead to
charge oscillations around the homogeneous equilibrium discussed in the previous

section.

++ 4+ +
|

Fig. 2.10. In a ‘thought experiment’ the electrons are shifted to the right (dashed boundary)
and released to oscillate at the plasma frequency.

We perform the following ‘thought experiment’ drawn in Figure 2.10: The
electrons of a plasma are moved slightly to the right by a distance z. Ions are
assumed to be fixed (or infinitely inert). This produces a volume V = Fz to
the right where only electrons exist, and an equal volume to the left where only
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ions remain. Let the number density of electrons in V be n.. The electric field
produced by this artificial charge separation is given by a simple integration of
Poisson’s equation (2.4.5). Neglecting edge effects, the problem is one-dimensional
and yields, as for an infinitely extended capacitor,

E = 4dwen.z . (2.5.1)

Now we release the electrons and they are accelerated in the negative z-direction
by the electric force. Using Equation (2.5.1) and neglecting thermal motions and
collisions,

el 4re’n, o\

e o = —(wp)'z , (2.5.2)
where m, is the electron mass. A characteristic frequency is defined in Equation
(2.5.2):

dre?ng\ /2
wt ::( > =27 -8.977-10%/n, [Hz]. (2.5.3)

P Me

The solution of Equation (2.5.2),

T = a cos(wpt +b) , (2.5.3)

describes the restoring motion of the electrons, their overshooting of the equilib-
rium position (z = 0), and oscillation. It is the eigenmode of charge oscillations
of electrons around infinitely inert ions. Its frequency, wy, is called the electron
plasma frequency. Here we have derived it under very artificial conditions (which
however contain and show the essence). We shall later encounter it again in various,
more general circumstances (Sections 4.2 and 5.2). We shall find more eigenmodes
due to the gyration of charged particles in a magnetic field or due to a particle
beam. They are fundamental plasma properties.

In Section 2.4 we mentioned the elimination of charge inhomogeneities by ther-
mal motion ‘and Debye shielding. To avoid this problem in the above experiment,
we have to require that the separation of inhomogeneities is larger than the thermal
diffusion per oscillation period. This condition amounts to

A > 27r1;—f- = 2mAp . (2.5.5)
P

Equation (2.5.5) suggests that the wave vector k := 27/ of a space-charge wave
has to satisfy & < 1/Ap, a result that will be derived in a different way in
Section 5.2. The identity relation between the fundamental plasma parameters
Vte, Wy, and Ap in Equation (2.5.5) simply follows from the definitions (2.4.10)
and (2.5.3). It reveals that Debye shielding is an equilibrium between thermal
motion (expressed by v ) and electric acceleration (e2n/m, implied by wy). The
time to establish plasma shielding, 2w Ap/vse, is the electron plasma period.
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2.6. Collisions

So far we have neglected interactions between single particles. What is the range
of applicability of this approximation? In addition to particle orbits, collisional
interactions are also of interest in the broader context of a gas being not in ther-
modynamical equilibrium. Collisions are likewise important for the thermalization
of a super-thermal population or a high energy tail of some particle species, as well
as the transport coefficients, such as resistivity, conductivity, or viscosity in some
steady non-equilibrium state.

The concept of particle collisions in a plasma is by far the most complex in-
troduced in this chapter and deserves careful study. The word ‘collision’ generally
evokes an image like that of two billiard balls bumping against each other. While
not in touch, there is no interaction to speak of. During the extremely short
time they are pushed against each other, they feel a strong repulsive force, which
practically ceases at the moment the two balls are separated from each other. A
collision between two charged particles, however, is a very different process since
they interact through the long-range Coulomb force. Thus the collision between
two charged particles takes place as a motion of the two charges on hyperbolic
paths in each other’s electric field.

2.6.1. PARTICLE ENCOUNTERS IN A PLASMA

Let us follow a particle, again to be called a ‘test particle’, moving simultaneously
in the fields created by many other particles (the ‘field particles’) in a plasma.
These fields add up to a stochastically changing force on the test particle; and its
orbit is rarely a hyperbola, characteristic of a two particle encounter, but a jittery
motion. Two test particles with similar, but not identical starting points and
initial velocities will, after some time, diverge into completely different directions
with different velocities (Figure 2.11).

¢large-angle
interaction

Fig. 2.11. Particles with nearly identical starting conditions diverge in space and velocity due
to stochastic collisional interactions.

Collisions in a plasma are therefore of a statistical nature. By a ‘collision’ we
mean the combined effect of a multitude (millions or billions!) of simultaneous
interactions with field particles. The collision time in plasma physics is defined
as the average time needed for a change of direction, energy, or momentum by an
amount to be specified.
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It is important for the understanding of collisions in plasmas to distinguish
clearly three ranges for field particles at different distances from the test particle.
A first dividing line has already been encountered in Section 2.4. The Debye
effect shields the test particle from the electric force of charges beyond the Debye
length Ap. We note here that a test particle moving faster than the mean thermal
speed of the field particles cannot build up appreciable shielding, being an effect
of thermal motion. However, moving in the Debye spheres of field particles, the
test particle experiences reduced electric fields.

In fact, particles beyond the Debye length are not without any influence. They
may cause a magnetic field or even an electric field that is not completely canceled
by shielding (such a situation occurs in electric currents). For such long-range fields
the same procedure is adopted as in classical electrodynamics. The local fields of
individual charges is neglected in so-called macroscopic electric and magnetic fields.
The deviations from the smoothed field are microscopic fluctuations due to single
particles.

The Debye length is about the range of microscopic fields in plasmas, and is a
relatively well defined boundary separating two populations of field particles. ()
The more distant charges influencing a test particle by macroscopic fields yield
smooth test particle orbits, drifts, and oscillations as discussed in Sections 2.1 —
2.3, and 2.5. (i%) The charges within the Debye sphere causing microscopic fields
lead to stochastic motion, termed collision.

A second distinction of field particle distances at the microscopic level is useful
to evaluate the process of collision. The criterion is the deflection angle of the
path of the test particle in the potential of a given field particle. The deflection is
obviously small if the energy of the test particle, %m;pu2 (where the subscript T
refers to the test particle and u is the velocity relative to the field particle), is large
compared to the electric potential, grqr/r1 (where ¢r := Zre and gp := Zpe are
the charges of the test particle and the field particle, respectively). The distance of
closest approach, ry, refers to the original orbit of the test particle in the absence
of forces. It is generally called the impact parameter. The particle is deflected by
a small angle only if r. < r; < Ap, where

qr4r
= 2.6.1
Te mTu2 ( 6 )

is the impact parameter for a 90° deflection. For r < r, one obtains a large-angle
deflection, changing the direction of the orbit by 90° or more by one single en-
counter. The ratio of small-angle to large-angle interactions varies as the respective
impact areas,

AL —r? AL 9 \? 4r
—— —= & —nAd)? = A? . .6.
TS ZTZF) (5 meXp) (2:6.2)
For the second equation in (2.6.2) we have used Equations (2.6.1) and (2.4.10),
and replaced mu? by 3kpT. The second expression in parentheses is the number
of particles in a Debye sphere (derived in Section 2.4) and is assumed to be a large
number. Equation (2.6.2) states that small-angle scattering generally outnumbers
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large-angle deflections by an enormous factor. It will become clear below (Eq.
2.6.18) that this multitude of distant encounters is about two orders of magnitude
more efficient in deflecting the test particle than close binary collisions.

The computational simplification of neglecting large-angle deflections follows
immediately. Small, simultaneous interactions become additive, and the scattering
of a particle by small-angle deflection is a random walk in angle and velocity.

2.6.2. FOKKER-PLANCK METHOD

The statistical method to describe small-angle deflections has been developed by
A.D. Fokker and M. Planck. Let P(v, Av) be the probability that a test particle
changes its velocity v to v+ Aw in the time interval At. Provided that the particle
number is conserved, the velocity distribution at time ¢ can be written as

fv,t) = /f(v ~ Av,t — At)P(v — Av, Av)d*Av . (2.6.3)

Noting that for small-angle deflections |Av| < |v|, the product fP in Equation
(2.6.3) can be expanded into a Taylor series,

fo,t) = [ (P~ A2 1P — AVIV,fP)
6t1 5 s (2.6.4)
+ EAviAuj[%a—wa] +...}d2Av

The Einstein convention has been introduced that the sums over the indices ¢ and
j have to be used if they appear together in the numerator and denominator, or
as subscripts and superscripts. Since the probability that some transition takes
place is unity, P is normalized to

/Pd3Av =1 . (2.6.5)

We define the average velocity change per time interval At:
/Ade3Av =<AV >, (2.6.6)
/AviAijd3Av =< Av;Avy; > . (2.6.7)

Exchanging integration and differentiation, the integral in Equation (2.6.4) is read-
ily evaluated. The first term in the integrand cancels with the left hand side of
the equation. The remaining terms form the important Fokker-Planck equation,

df(v,t) P < Avy;Av; Z) I ( < Aw; >) 968
( ot coll— Ov;0v; f 2At Ov; f At - (268)

BASIC CONCEPTS 43

The possibility of neglecting the higher-order terms in the expansion (2.6.4) is a
property of inverse-square law particles having multiple collisions. Equation (2.6.8)
shows that the motion of particles in velocity space then can be visualized as a dif-
fusion process. Its right hand side describes the temporal change of a distribution
of test particles by multiple, small-angle collision processes. It corresponds to the
right hand side of the Boltzmann equation (1.4.11). The first term in Equation
(2.6.8) represents the three-dimensional diffusion of the test particle in velocity
space; the second term is a friction, slowing down the test particle and moving it
radially toward the origin of velocity space.

2.6.3. COLLISION TIMES

The collision time in a plasma is not uniquely defined as in the case of neutral
atoms. A charged particle in the Coulomb potential of another particle experiences
two effects: (i) It is deflected from its initial direction, and (i4) it accelerates the
field particle. The latter constitutes an energy loss and a drag force (friction) on
the motion of the test particle. The relative importance of the two effects depends
on the mass ratio of the two particles. If the field particle is much heavier, its
acceleration is small, and the direction of motion of the test particle is changed
before it loses its energy. The velocity distribution of a set of test particles with
the same initial velocity approaches isotropy before the energy is lost. If; on the
contrary, the field particle is very mobile, the drag on the test particle slows it
down before deflection. The time when a test particle changes its direction is
generally different from the time it loses its energy or momentum. Depending on
the particular problem, the collision time has to be defined accordingly. Several
relaxation times have been introduced by L. Spitzer, some of which we evaluate
in the following.

A. Angular Deflection

The scattering of a particle from its initial direction by distant encounters is a
diffusion process expressed by the first term of the Fokker-Planck equation (2.6.8).
It is natural to define the mean deflection time

1)2
td :

L (2.6.9)
< Avk,, /At >

where < Avgerp /At > is the average diffusion in velocity perpendicular to the
initial velocity v of the test particle in the time interval At. We denote by vperp
and vp,r (needed later) the velocity components perpendicular and parallel, re-
spectively, to the initial velocity. They are generally different from v, and v, , the
velocity components relative to the magnetic field. The collision time, as defined in
Equation (2.6.9), is the average time in which the test particle is deflected through

an angle of order 90°.
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The calculation of < AvoAv > is lengthy but straightforward, and is omitted
here. The interested reader is referred to the classical textbooks of plasma physics
listed at the end of the chapter. It is based on the simple physical idea that the test
particle’s velocity changes gradually under the influence of many field particles,
whose motions are approximated by straight lines. The electric force on the test
particle is given by adding the combined effects of the field particles. To average
the effect, the sum is replaced by integration over the distribution in space and
velocity. For field particles with an isotropic, Maxwellian distribution, the integral
in velocity space reduces to the part |vp| < |vr| and yields the error function o
and the combination G with its derivative, where

U(z) := \/g/oz exp(—%)dy , (2.6.10)

_ U(z) — z¥'(x)

G(z) : = (2.6.11)
The limiting values are
lim ¥(z)=1 , (2.6.12)
r—>00
and
i ! 2.6.13
wlgr;oG(m)=E§ . (2.6.13)
The general result of the integration in velocity space is
3
v
tg = - ~ (2.6.14)
T AU (v/vr) - Glv/ver)]
where the diffusion constant A4 has been defined by
2 9
A= STPEGTaRInA (2.6.15)

(mr)?

A is the ratio of the boundaries on the integral over space around the test particle
where interactions take place. A finite lower limit of the impact parameter has
to be introduced to guarantee approximate rectilinear motions. Since small angle
deflections dominate, we put Tmin = 7¢, and A is therefore given by Equation
(2.6.2). As it enters only as a natural logarithm, the rough approximations of the
boundaries are greatly alleviated. For solar abundances and electrons or protons
as test particles,

~
~

1.24.104(T%/2/nk/?), for T $4.2-10° K (2.6.16)
8.0-108(T/nt’?), for T242-10°K . (2.6.17)

Equation (2.6.17) includes quantum-mechanical effects on electrons at large veloc-
ities where 7, falls below the de Broglie wavelength of the particles. For collisions
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between ions, the classical expression, Equation (2.6.16), should be used. In the
solar and stellar coronae and outer envelopes, InA is about 20 and decreases to
around 10 in the chromosphere. The theory breaks down for extremely high den-
sities and low temperatures, where A approaches unity.

It is instructive to consider the deflection of a fast particle having v > wp
(the thermal velocity of the field particles). According to Equations (2.6.12) and
(2.6.13), G can then be neglected and ¥ ~ 1. The deflection time becomes

U S
mnor28 InA ~ “8InA
2

where t.e = (mnor?)~! is the collision time of close encounters. In the plasmas of
interest here, Equation (2.6.18) is consistent with the assumption of the Fokker-
Planck method that close encounters can be neglected. Since a test particle feels
both electrons and ions, the total deflection time combines the effect of all field
particles, and

tam (2.6.18)

2,3
mpUp

= 8met(n, + >, Z2n;)Z21InA
A useful approximation for a non-relativistic, super-thermal particle with kinetic
energy €xev (in keV) in a fully ionized plasma with solar abundances is

3/2 2
_ 7 EkeV mr 1 20 *
tq=9.5-10 ne (me> Z (m) I¢] , (2.6.20)
where collisions with both electrons and ions have been taken into account. The
deflection time (2.6.20) has been numerically evaluated in Table 2.1 for electrons
and protons moving with v > v;r. We note that this deflection time, increasing
with velocity in proportion to v3, is different from neutral atoms and billiard
balls (where collision time decreases as 1/v). The faster a charged particle moves
through a plasma, the smaller its frictional drag. It is this property of longevity
which makes super-thermal particles a distinct population in some cosmic plasmas.
The magnetic field has been omitted in this discussion. It does not change
the basic process of deflection nor the derived collision times. Collisions, however,
allow charged particles to diffuse across magnetic field lines. The diffusion is simply
caused by random steps of about one gyroradius within a collision time, ¢4.

tq

(2.6.19)

B. Energy Exchange

Another collision time, t.;, is related to the energy change between the test particle
and the field particles. In analogy to the deflection time we define the energy-
exchange time by

82

tey = ———F——
FT < Ae2/At >
This definition is meaningful if the test particle has a velocity of the order of
the thermal velocity of the field particles. The energy change then fluctuates in

(2.6.21)
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its sign, and Equation (2.6.21) describes the net effect. Writing the exchange of
energy in terms of parallel and perpendicular velocity relative to the initial velocity
v of the test particle,

Ae = _’22 {[(v + Avpar)? + Av2e ] —v*} (2.6.22)

After averaging over the statistical ensemble we find in the lowest order of A-terms

<At > =mh? <Al > (2.6.23)
and, again using the Fokker-Planck method,

v? v3

tew = T A o T A — T AA Ty
4 < A’Ug r/At > 4AdG(1)/’UtF)

The energy-exchange time is for instance used to determine the time to equalize
the temperatures of two plasma species (Exercise 2.5). For infinitely heavy field
particles, t., approaches infinity as the field particles become stationary, the test
particle would move in their fixed potential, and collisions are elastic. Equation
(2.6.24) becomes unreliable for large v/v;p where secondary terms contribute.

(2.6.24)

a.

C. Momentum Loss

The effects of collisions on macroscopic motions such as friction, viscosity, electric
resistance, and wave damping frequently require an evaluation of the average loss
of forward momentum. The slowing down of the initial velocity of a test particle is
a combination of the frictional forces and deflections by multi-particle interactions.
Which effect dominates depends on the mass of the field particles. It is measured
by the slowing-down time,

v 2’0(’[)”:*)2
— = — — . 2.6.25
< A’Upar/At > [l + mT/mF]AdG(v/vtF) ( )

For v > wp it is proportional to v3. Contrary to te., the slowing-down time
is finite for infinitely heavy field particles and is twice the deflection time, since
forward momentum loss is dominated by deflection. Nevertheless, the slowing-
down time for electron motions close to (or below) the thermal speed of the field
particles is different and needs careful evaluation.

ts 1=

D. Energy Loss

A very important collision time is the energy loss of a fast particle. At vy > wep,
the test particle only loses energy by interactions. The energy loss time is defined

by

€
te i = ———— . 2.6.26
< Ag/At > ( )

Using Equation (2.6.22), we rewrite it as
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1 20 <Ay /At> < Avfm/At > < Avgerp/At >
o=- . - g - = . (2.627)

This equation can be expressed in the previously derived terms according to the
definitions (2.6.25), (2.6.24), and (2.6.9).

L=t 1. % (1+ %)(%)ZG(v/vtp) —W(o/ur)| . (26.28)

For v > v F it simplifies to

v3mF

te &
Agme

(2.6.29)

Let an electron be the test particle for illustration. Equation (2.6.29) then yields a
very long energy loss time for protons as the field particles. The physical reason is
again the large inertia of protons, making interactions with them nearly loss-free.
Thus the relevant collision partners and field particles are the thermal electrons.
For fast electrons, the energy loss time becomes equal to the electron-electron
deflection time (Eq. 2.6.14). Also for proton test particle, the much more mobile
field electrons absorb most of the collision energy. ’
Relativistic electrons lose energy within a time of

el ~ 1.59.10'2 SMV (2.6.30)

Te

where ep7.v is the particle energy in MeV (Benz and Gold, 1971).

Uperp

i3 b

13

Fig. 2.12. Evolution of the probability distribution of a super-thermal electron due to small-
angle scattering starting at tg with a velocity vg. Since energy exchange and friction are slow,
changes in direction dominate. After t. 2 ts 2 t4 the ring distribution contracts toward zero

A~

velocity.
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E. Discussion

How are the different collision times related to each other? As an example, let us
follow in time a fast electron (test particle) interacting with field particles. The
small-angle deflections by microscopic fields in a plasma scatter the test particle
in a stochastic way described by a probability distribution fr(x,v, t) in space and
velocity. The distribution is initially a delta function in six dimensions, H?:l d(z;—
#0i)0(v; — voi), centered at the initial position and velocity. The four collision
times derived above indicate how this probability function spreads out, and they
suffice for a statistical description of the behavior of a test particle (Figure 2.12).
If the electron initially is super-thermal (i.e. vr > wr), pitch-angle scattering
predominates. The probability distribution grows only slowly in width parallel
to v, since energy-exchange is extremely slow (Eq. 2.6.24). After a time ¢4 the
distribution forms a ring in the (Vperp-Upar) Plane (about at ¢3 in Fig. 2.12), when
the forward momentum is also lost. The radius of the ring decreases by energy
loss. Energy exchange widens the ring (see Eq. 2.6.23), which finally shrinks
toward the compact distribution of the field particles near the origin of velocity
space after about ..

Table 2.1. Collision times in seconds for non-relativistic test particles with v > v in a fully
ionized hydrogen plasma with solar helium abundance and using cgs units. The values in the
table have to be corrected by the factor 20/InA, being usually of order unity.

test —  electron electron proton proton
field — electrons ions electrons ions
3
ta 31-107%0%  27.10°%%  10-1078Z  90- 10-M
2097 203 ~16 v} 139§
ts 3.1-10 F:; 5.4-10 ?{:; 1.1-10 n—; 1.0-10 é
te 3.1.10720% 62.10°17%  57.107172% 1.1-10718%
Ne Ne TNe Ne

It is evident from Table 2.1 that a super-thermal particle (electron or proton)
is deflected by ions equally well as by electrons (except for a small difference due
to field particle densities converted into n.). This is not true for energy loss.
An electron is slowed down twice as much by thermal electrons as by ions, and
an ion is retarded almost exclusively by the friction of electrons. This difference
between electron and ion slow-down has a simple explanation. A beam of super-
thermal electrons is decelerated also by loss of directed momentum, not only by
energy loss of individual particles. Thus super-thermal electrons are decelerated
in forward momentum and deflected at similar rates. Ions are slowed down faster
than deflected.

In conclusion, we note that the collision times of a charged particle in a plasma
increase with velocity to a power of 3 or 5. It is opposite to billiard balls (or neu-
tral atoms), in which collision time decreases with velocity. This unusual property
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is specific to the inverse-square law of particle interaction and has far-reaching
consequences in astrophysics: Once charged particles are accelerated, they keep
their energy much longer than the collision time of the thermal background par-
ticles. Energetic particles may exist long after their acceleration and can serve as
indicators of violent processes in the past, like the smoke of a gun. As an example,
we just mention cosmic rays in interstellar space, which — once accelerated in a
supernova or a stellar flare — have t. easily exceeding 10° years. Nuclear collisions,
following a different law, effectively reduce this time.

F. Thermal Collision Times

The different collision times become practically identical for a test particle moving
at the thermal velocity and interacting with its own species. Deflection and energy
exchange occur at similar rates. This thermal collision time — also called self-
collision time — is a characteristic time of a plasma species rather than of a single
particle. Its value generally is taken as ¢4 evaluated at the root mean square
thermal velocity in three dimensions, (3k3T/m)'/2, and amounts to

t (2.6.31)

e 0.267 T32 [ m \/?
T 07144, WA Zn (m_) s}

where Z is the charge of the particles in units of e, the elementary electron charge,
T is in K, n in cm™3, and A has to be evaluated from Equation (2.6.16) or’ (2.6.17).
The thermal collision time sets the time scale in which the bulk of a plasma regains
thermal equilibrium after a disturbance. We note that (i) this takes (my,/m,)'/?
longer for protons than for electrons, and (i) that for 20 keV electrons, to give
an example, . is more than three orders of magnitude larger than ¢; for thermal
electrons at 108 K.

Waves that include oscillating electrons (an example was given in Section 2.5)
are damped by the collisional randomization of electron momentum on ions. The
process occurs within the thermal electron-ion collision time, t. ;, calculated from
the forward momentum loss (Eq. 2.6.25),

T3/2 20
tei=1907 10 =—5— | — . 6.
, S 77, (lnA) [s] (2.6.32)
The ions are the field particles. For a fully ionized plasma with solar abundances
> Z2n; & 1.16 ne.

Exercises

2.1: Particles moving along a curved magnetic field experience a drift due to their
inertia. Calculate the centrifugal drift (Eq. 2.1.29) by defining a ‘centrifugal
force’,

F, = —ZR, , (2.6.33)
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2.2:

2.3:

2.4:

2.5:
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where R, is the curvature radius of the magnetic field.
Calculate the bounce period (Eq. 2.2.4) of a particle orbiting in a symmetric
magnetic loop having a parabolic form: B = By(1+ s%*/H%), where s is the
distance from the top.

Prove that Equation (2.3.1) is consistent with the Boltzmann equation
(1.4.11) in the absence of collisions and other forces.
Calculate the distance after which a beam evolving out of a hot Maxwellian
distribution exceeds three times the mean thermal velocity, vic, of the cold
population, the approximate threshold for instability. Assume v/vic =
10, T, =2 108K, and 7 = 1s, values typical for solar type 11 radio bursts.
Prove that the equilibration time to equalize the temperatures of two plasma
species T' and F defined by

teq :=| Te — Tr | (dTr/dt)™} (2.6.34)
amounts to
mrm ksTr  kaTe\*?
teg = —=g—a ( BT 2B F) . (2.6.35)
8v2rgaqinplnA \ mr mr

[Hint: Calculate < Aer >p and average over velocity of species T.] As
an example evaluate t., for the solar wind, where the electron temperature
usually exceeds the ion temperature. How long would it take to relax the
observed difference near Earth between electrons (say Te = 10% K) and pro-
tons (T, = 3-10* K) in the solar wind if the density (ne =5 cm™3) did not
change?
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